AI 모델 성능을 극대화하는 아하랩스의 데이터셋 구축 노하우

AI 모델 성능을 극대화하는 아하랩스의 데이터셋 구축 노하우

AI 모델 성능을 극대화하는 아하랩스의 데이터셋 구축 노하우  Chloe Woo | Content Strategist Toggle 1. 데이터 수집 전략 – 다양한 데이터 확보를 통한 성능 향상(1) 데이터 수집의 핵심 – 다양한 케이스 확보(2) 엣지 케이스(Edge Case) 분석 – 적절한 데이터 추가로 모델 개선2. 고품질 데이터셋 설계 전략(1) 객체 형태 차이 고려(2) 클래스 차이 고려3. 데이터 라벨링 최적화 – 일관된 라벨링 기준을 통한 성능 향상4. 학습...
제조 시계열 데이터(Time series Data)는 왜 중요할까? 

제조 시계열 데이터(Time series Data)는 왜 중요할까? 

제조 시계열 데이터(Time series Data)는 왜 중요할까?   Chloe Woo | Content Strategist Toggle 1. 실시간 모니터링 및 성능 최적화(Condition Monitoring and Performance Optimization)2. 예측 유지보수(Predictive Maintenance)3. 에너지 소비 최적화(Energy Consumption Optimization)4. 품질 관리(Quality Control)5. 생산 계획 및...
복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게

복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게

복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게  Chloe Woo | Content Strategist 시계열 데이터 (1)편 제조 시계열 데이터의 특성>>먼저 읽어보기 시계열 데이터 분석은 과거부터 다양한 산업에서 중요한 역할을 해왔으며, 이를 위해 전통적인 통계분석 기법이 널리 사용돼 왔습니다. 하지만 제조 환경에서 수집되는 다변량 시계열 데이터는 비선형적인 상호작용과 복잡한 패턴을 자주 보이기 때문에, 이러한 전통적인 기법으로는 충분한 분석을...
제조 시계열 데이터(Time Series Data)의 특징

제조 시계열 데이터(Time Series Data)의 특징

제조 시계열 데이터(Time Series Data)의 특징  Chloe Woo | Content Strategist 제조 시계열 데이터(Time Series Data)란? 시계열 데이터란 시간 순서대로 집계된 데이터를 뜻합니다. 매일/매시간 업데이트되는 기온, 습도, 강수량 같은 날씨 정보, 분초 단위로 변하는 주식의 가격 정보, 날짜 및 시간과 입출금 된 액수가 함께 기록되는 은행 거래 내역 등이 모두 시계열 데이터이죠. 시간의 흐름이라는 기반 위에서 사는 우리들과 가장...
산업 현장에 온디바이스 AI를 도입해야 하는 이유

산업 현장에 온디바이스 AI를 도입해야 하는 이유

산업 현장에 온디바이스 AI를 도입해야 하는 이유  Chloe Woo | Content Strategist 이전 아티클에서 온디바이스 AI의 개념과 장점에 대해 알아보세요.     최근 LLM 서비스들의 속도가 무척 느려졌는데, 실감하고 계신가요? 생성형 AI 열풍으로 더 다양한 기능, 더 높은 성능을 구현하기 위해 모델의 크기가 급증한 탓인데요. 실제로 2012년 AlexNet 이후 AI 모델의 크기는 매년 10배씩 성장했습니다. 그런데 그에 따라 속도가 느려졌다는 건,...