아하랩스는 신뢰할 수 있는 데이터 역량과
현장 친화적인 AI 기술로
산업용AI 시장을 주도하고 있습니다.
Success case
All
Quality Control
Predictive Maintenance
이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 정상 데이터만으로 검사 자동화 도입
Challenge 파우치형 배터리는 표면 형상의 자유도가 높아 불량의 형태를 특정하기 어려움. 이 때문에 기존 룰 베이스...
Data CAMP 레시피 기능으로 ‘다품종 소량생산’ 불량검사를 손쉽게 관리한 사례
Challenge 기존 룰 베이스 표면 결함 판정 비전 컨트롤러는 '다품종 소량생산' 환경에 유연하게 대응이 어려움 기존의...
추가 솔루션 도입 없이 검사 데이터와 고유 바코드 숫자를 통합해 생산 이력 추적이 가능해진 사례
Challenge 전기자동차 배터리 화재 및 리콜 이슈로 배터리 수율 향상과 생산 이력 추적에 대한 필요성이 커짐 신규...