[AW2024] 라벨링 없이 정상 영상만 있어도 AI 학습&활용 가능

[AW2024] 라벨링 없이 정상 영상만 있어도 AI 학습&활용 가능

[AW2024] 라벨링 없이 정상 영상만 있어도 AI 학습&활용 가능 아하랩스는 지난 3월 27일부터 29일까지 서울 코엑스에서 열린 ‘2024 자동화산업전(이하 AW2024)’ 전시회에 참가했습니다. 이번 전시회는 450개 기업이 참여해 역대 최대 규모로 개최되었는데요. 아하랩스 부스에도 많은 고객님이 방문해 아하랩스의 인공지능 솔루션에 대해 다양한 의견과 질문을 나누어 주셨습니다. 깊은 감사의 말씀드립니다.   라벨링 없이 정상 데이터만으로 AI 학습과...
2024년 예지보전 기술 트렌드 3 – 이상 탐지(Anomaly Detection) 등

2024년 예지보전 기술 트렌드 3 – 이상 탐지(Anomaly Detection) 등

2024년 예지보전 기술 트렌드 3 – 이상 탐지(Anomaly Detection) 등 예지보전 방법으로는 (1)간접 고장 예측, (2)이상 탐지, (3)잔존 수명 예측 등 크게 3가지가 있습니다. IoT Analytics 분석에 따르면, 최근 이상 탐지에 대한 연구가 증가하고 있는 것으로 나타났습니다.[1] 이번 아티클에서는 각 접근 방식의 상세 개념과 연구 예시, 이점 및 한계를 소개합니다.    1. 간접 고장 예측(Indirect failure...
‘1종 오류’ 찾아내는 딥러닝 모델로 ‘과검’ 발생률 감소

‘1종 오류’ 찾아내는 딥러닝 모델로 ‘과검’ 발생률 감소

‘1종 오류’ 찾아내는 딥러닝 모델로 ‘과검’일 확률을 계산한 사례 이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 검사 이미지 전체 영역을 학습합니다. 실제 생산품의 결함이 아닌, 그 밖의 다른 문제로 인한 과검(1종 오류) 사례일 확률을 추론합니다.  Challenge 품질 검사 안정화를 위한 과검 재검사 및 이력 관리 툴 부재   최근 스마트팩토리, 산업 자동화 트렌드를 타고 다양한 제조 현장에 검사 자동화 프로세스가 속속 도입되고 있지만, 수십 년...
이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 정상 데이터만으로 검사 자동화 도입

이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 정상 데이터만으로 검사 자동화 도입

이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 정상 데이터만으로 검사 자동화 도입 이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 검사 이미지 전체 영역을 학습합니다. 실제 생산품의 결함이 아닌, 그 밖의 다른 문제로 인한 과검(1종 오류) 사례일 확률을 추론합니다.  Challenge 쉽게 손상되는 파우치형 배터리의 자동 검사 툴 부재  전기자동차에 들어가는 배터리 가운데 파우치형 배터리가 있습니다. 배터리 소재를 쌓아 올린 뒤 알루미늄...