제조 시계열 데이터(Time series Data)는 왜 중요할까? 

제조 시계열 데이터(Time series Data)는 왜 중요할까? 

제조 시계열 데이터(Time series Data)는 왜 중요할까?   Chloe Woo | Content Strategist Toggle 1. 실시간 모니터링 및 성능 최적화(Condition Monitoring and Performance Optimization)2. 예측 유지보수(Predictive Maintenance)3. 에너지 소비 최적화(Energy Consumption Optimization)4. 품질 관리(Quality Control)5. 생산 계획 및...
복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게

복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게

복잡한 제조 시계열 데이터, 통계분석+딥러닝으로 더 정확하게  Chloe Woo | Content Strategist 시계열 데이터 (1)편 제조 시계열 데이터의 특성>>먼저 읽어보기 시계열 데이터 분석은 과거부터 다양한 산업에서 중요한 역할을 해왔으며, 이를 위해 전통적인 통계분석 기법이 널리 사용돼 왔습니다. 하지만 제조 환경에서 수집되는 다변량 시계열 데이터는 비선형적인 상호작용과 복잡한 패턴을 자주 보이기 때문에, 이러한 전통적인 기법으로는 충분한 분석을...
제조 시계열 데이터(Time Series Data)의 특징

제조 시계열 데이터(Time Series Data)의 특징

제조 시계열 데이터(Time Series Data)의 특징  Chloe Woo | Content Strategist 제조 시계열 데이터(Time Series Data)란? 시계열 데이터란 시간 순서대로 집계된 데이터를 뜻합니다. 매일/매시간 업데이트되는 기온, 습도, 강수량 같은 날씨 정보, 분초 단위로 변하는 주식의 가격 정보, 날짜 및 시간과 입출금 된 액수가 함께 기록되는 은행 거래 내역 등이 모두 시계열 데이터이죠. 시간의 흐름이라는 기반 위에서 사는 우리들과 가장...
산업 현장에 온디바이스 AI를 도입해야 하는 이유

산업 현장에 온디바이스 AI를 도입해야 하는 이유

산업 현장에 온디바이스 AI를 도입해야 하는 이유  Chloe Woo | Content Strategist 이전 아티클에서 온디바이스 AI의 개념과 장점에 대해 알아보세요.     최근 LLM 서비스들의 속도가 무척 느려졌는데, 실감하고 계신가요? 생성형 AI 열풍으로 더 다양한 기능, 더 높은 성능을 구현하기 위해 모델의 크기가 급증한 탓인데요. 실제로 2012년 AlexNet 이후 AI 모델의 크기는 매년 10배씩 성장했습니다. 그런데 그에 따라 속도가 느려졌다는 건,...
제조업에 비지도학습 이상 탐지 AI(Anomaly Detector)를 적용해야 하는 이유

제조업에 비지도학습 이상 탐지 AI(Anomaly Detector)를 적용해야 하는 이유

제조업에 이상 탐지(Anomaly Detector) AI를 적용해야 하는 이유 제조 현장에 AI 도입이 가속화되고 있습니다. 2023년 제조업 분야 AI 시장 규모는 32억 달러로 평가되었고, 2028년까지 208억 달러에 이를 것으로 예상됩니다. 이 기간 동안 연평균 성장률(CAGR)은 45.6%에 달하는데요. 최근 몇 년 새 AI가 급격하게 발전하면서 제조업에서도 AI를 통한 공정 자동화, 효율 향상, 수율 향상, 다운타임 최소화 등에 대한 수요가 계속해서 높아지고 있기...