에 의해서 Chloe Woo | Content Strategist | 7월 17, 2024 | 인사이트 리포트
멀티모달 대형비전언어모델(LVLM)을 활용한 산업용 이상감지 사례 ✓ 대형언어모델(LLM) 아티클 먼저 읽어보기 멀티모달 트렌드 혹시 코를 막고 양파를 먹는 실험에 대해 아시나요? 실험에 참가한 많은 사람들이 본인이 먹고 있는 것이 양파인지 알아채지 못했을 뿐만 아니라, 심지어 사과를 먹고 있는 것 같다고 답한 사람도 있었습니다. 혀로 느껴지는 화학적인 맛(미각)과 식감(촉각), 그리고 냄새(후각) 정보가 모두 있어야 종합적인 음식의 맛을 느낄 수 있다는 것이 실험의...
에 의해서 Chloe Woo | Content Strategist | 7월 17, 2024 | 인사이트 리포트
대형언어모델(LLM; Large Language Model)이 제조업을 혁신하는 방법 Industry 5.0, 디지털 전환(DX), 끝없는 기술 발전으로 정의되는 시대에 제조 분야는 혁신의 문턱에 서 있습니다. 이러한 변화의 핵심에는 단연 AI가 있는데요. 특히 챗GPT로 대변되곤 하는 대규모 언어 모델(LLM, Large Language Model)은 제조 현장을 엄청나게 변화시킬 잠재력이 있는 것으로 기대됩니다. 이번 아티클에서는 복잡한 인간의 언어와 각종 도메인 지식을...
에 의해서 Chloe Woo | Content Strategist | 6월 14, 2024 | 인사이트 리포트
MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란? 2024년 현재 제조업은 매우 빠르게 변화하고 있습니다. 물리적 시스템의 디지털 복제본을 만들어 실시간 모니터링과 시뮬레이션을 수행하는 ‘디지털 트윈’, 머신러닝과 IoT를 활용해 장비 고장을 예상하고 사전에 대응하는 ‘예지보전(예측 유지보수)’, 공정 자동화와 최적화를 추구하는 ‘스마트 제조’, 환경 친화적 공정을 통해 탄소 발자국을 줄이는 ‘지속...
에 의해서 Chloe Woo | Content Strategist | 6월 11, 2024 | 인사이트 리포트
제조 기업이 머신러닝 개발 전주기 자동화(MLOps) 플랫폼을 활용할 때의 이점 들어가기 전에 MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란? 제조 기업의 AI 활용을 돕는 MLOps 플랫폼 제조업 분야로 한정해서 보면, 한국의 산업용 AI 도입율은 50%로 다른 나라에 비해 매우 낮은 수준입니다. 주된 원인으로는 ‘투자 대비 성과의 불확실성’, ‘내부 운용 인력 부족 등이 꼽힙니다. PoC(Proof of Concept)까지...
에 의해서 Chloe Woo | Content Strategist | 4월 12, 2024 | 뉴스
[AW2024] 표면 결함 검사의 조명 제어는 AI Light Palette로 아하랩스는 지난 3월 27일부터 29일까지 서울 코엑스에서 열린 ‘2024 자동화산업전(이하 AW2024)’ 전시회를 성황리에 마쳤습니다. 450개 기업이 참여해 역대 최대 규모로 개최되었는데요. 아하랩스 부스에도 많은 고객님이 방문해 아하랩스의 인공지능 솔루션에 대해 다양한 의견과 질문을 나누어 주셨습니다. 깊은 감사의 말씀드립니다. 아하랩스 팀은 이번 전시회에서 스마트 조명...