에 의해서 webmaster | 1월 6, 2025 | 이차전지, 품질관리
산업용 온디바이스 AI를 구성해 86% 낮은 투자비로 AI 검사를 도입한 사례 Challenge 외부에서 유입된 이물로 인한 결함은 형태를 특정하기 어려워 규칙 기반 알고리즘이 아닌 AI 검사(딥러닝 모델) 필요 그러나 기존 설비 PC에 장착된 그래픽 카드로는 딥러닝 모델 구동 불가 하드웨어 구조 변경 및 투자비를 최소화한 실시간 AI 검사 솔루션 필요 Approach 온디바이스 AI 구성 GPU보다 가격이 저렴하고 기존 PC에 설치 가능한...
에 의해서 webmaster | 12월 9, 2024 | 이차전지, 품질관리, 예지보전
육안 검사부터 AI 자율제조까지 – Data CAMP가 함께한 이차전지 제조사의 DX 여정을 소개합니다 Chloe Woo | Content Strategist 전기자동차 시장이 급격히 커지면서 최근엔 이차전지 제조업이 첨단 산업으로 여겨지지만, 사실 한국 충전식(리튬 이온) 배터리의 역사는 1990년대부터 시작합니다. 그리고 이렇게 역사가 빛나는 제조 현장에는 옛 것과 새로운 것이 공존하기 마련이죠. 잘 돌아가던 공장인 만큼 모든 걸 한 번에 바꾸기...
에 의해서 webmaster | 11월 5, 2024 | 타이어, 품질관리
3단계 품질검사 파이프라인으로 타이어 원단의 불량 유무&위치&유형을 자동 검사한 사례 Challenge 타이어 원단을 만드는 압연공정에 자동 품질검사 부재(육안 검사) 원단 자체 불량으로 인한 완성품 폐기 Approach 3단계 품질검사 파이프라인 구축 1. Anomaly Detection: 실시간 이상 감지를 통해 불량 유무 판단 2. Classification: 불량 유형 분류 3. PLC 설비 데이터 수신: 불량 위치 계산...
에 의해서 Chloe Woo | Content Strategist | 12월 28, 2023 | 이차전지, 품질관리
이상탐지(Anomaly Detection) 딥러닝 모델을 활용해 정상 데이터만으로 검사 자동화 도입 Challenge 파우치형 배터리는 표면 형상의 자유도가 높아 불량의 형태를 특정하기 어려움. 이 때문에 기존 룰 베이스 검사는 물론, 분류나 분할 같은 딥러닝 모델 기반의 결함 검사도 활용하기 어려움 글로벌 진출시 한국과 동일한 숙련 검사 노동자를 구하기 어려워 검사 자동화 도입 요구됨 Approach LISA의 2단계 접근법 (1)...
에 의해서 Chloe Woo | Content Strategist | 11월 30, 2023 | 품질관리, 자동차
Data CAMP 레시피 기능으로 ‘다품종 소량생산’ 불량검사를 손쉽게 관리한 사례 Challenge 기존 룰 베이스 표면 결함 판정 비전 컨트롤러는 ‘다품종 소량생산’ 환경에 유연하게 대응이 어려움 기존의 비전 컨트롤러는 이력 조회 기능이 없어, 비슷한 모델을 생산하게 됐을 때 이전의 양불 판정 규칙을 참고하기 어려움 정상과 불량 사이에 해당하는 ‘재용접’ 케이스를 판정하고 PLC 통신을 통해...
에 의해서 Chloe Woo | Content Strategist | 11월 30, 2023 | 이차전지, 품질관리
추가 솔루션 도입 없이 검사 데이터와 고유 바코드 숫자를 통합해 생산 이력 추적이 가능해진 사례 Challenge 전기자동차 배터리 화재 및 리콜 이슈로 배터리 수율 향상과 생산 이력 추적에 대한 필요성이 커짐 신규 배터리가 새로 개발되었으나 기존 생산라인 및 과거의 품질검사 시스템을 그대로 활용해 데이터 연계 및 통합이 불가능한 상태. 생산 이력을 추적할 수 없다는 문제 발생 Approach 다양한 통신 프로토콜을 제공하는 Data...