엣지 컴퓨팅으로 제조 데이터 100% 활용하기

2023-12-01

산업용 사물인터넷(IIoT)의 발달로 제조 현장에서 엄청나게 많은 데이터가 쏟아져 나오고 있습니다. 예컨대 2,000대의 장비를 보유한 현대적인 공장에서 매월 2,200테라바이트의 데이터가 생성되는 것으로 추정되죠.[1] 종전대로라면 이 데이터는 기업 내부에 갖춰져 있는 중앙집중식 데이터 센터, 즉 서버로 올라가야 합니다. 기업에 따라 중앙집중식 퍼블릭 클라우드일 수도 있고요.

하지만 엄청나게 많은, 더구나 갈수록 다양해지고 복잡해지는 데이터를 거의 실시간으로 중앙에 올리고자 하면 여러 문제가 발생할 수 있습니다. 이기종 설비나 분산된 공장에서 데이터를 수집하는 것 자체가 일단 매우 까다로운 일이고요. 네트워크 지연으로 데이터가 손실될 수도 있습니다.[2] 즉, 데이터의 규모와 복잡성이 네트워크의 성능을 뛰어넘고 있다는 것이죠. 만약 데이터를 밀리세컨드 단위로 처리하고 분석해서 실시간으로 의사결정을 내려야 하는 상황이라면, 이런 단점은 공장 운용에 더욱 심각한 영향을 미칠 수 있습니다.

이를 해결하기 위한 방안으로 ‘엣지 컴퓨팅’이 있습니다. 제조 데이터의 형태가 다양해지고 양도 급증하면서 엣지 컴퓨팅의 중요성은 더욱 커지고 있죠. 이번 아티클에서는 스마트팩토리에서 엣지 컴퓨팅의 장점, 활용 사례, 구현을 위한 고려 요소 등에 대해 알아봅니다.

 

엣지 컴퓨팅이란?

엣지 컴퓨팅이란 데이터가 생성된 단말 설비, 즉 엣지에서 데이터를 실시간으로 수집하고 처리하는 것을 뜻합니다(경우에 따라 근거리에 있는 서버일 수 있습니다). 데이터를 기존의 중앙집중식 데이터 센터나 클라우드로 보내지 않거나, 혹은 일부만 선별해서 전송하죠. 스마트팩토리 현장을 예로 들면, 엣지 컴퓨팅을 이용해 공장 내의 각종 설비와 검사 장비, 센서 등에서 생성된 데이터를 로컬에 바로 저장하고 전처리해서 분석까지 수행할 수 있습니다.

예를 들어 엣지는 ATM 단말기에 비유할 수 있습니다. 사용자는 가까운 ATM에서 쉽고 빠르게 현금 확보가 가능하죠. 은행 웹사이트를 탐색하거나 모바일 앱을 누른 뒤 작업이 완료되기까지 소요시간이 길어지는 경우가 많은데요. 이런 현상은 보통 데이터 저장과 처리를 담당하는 곳이 사용자와 물리적으로 멀리 떨어져 있기 때문에 발생합니다.[3]

 

엣지 컴퓨팅은 데이터가 생성된 단말 설비, 즉 엣지에서 데이터를 실시간으로 수집하고 처리하는 것을 뜻합니다. 데이터를 기존의 중앙집중식 데이터 센터나 클라우드로 보내지 않거나, 혹은 일부만 선별해서 전송합니다. – Image Credit : AHHA Labs

 

엣지 컴퓨팅의 장점[4][5]

(1) 처리 시간 최소화

많은 산업 분야에서 거의 실시간에 가까운 데이터 전송을 요하는 기술이 사용됩니다. 예를 들어, 최근에는 인간 작업자와 로봇이 함께 일하는 경우가 많은데요. 안전하지 않은 상황이 발생하면 정보를 빠르게 송수신해서 즉각 로봇이 멈출 수 있도록 해야 합니다. 마찬가지로 자율주행차량의 경우 응답시간이 20ms 미만으로 유지돼야 하는데, 클라우드 통신으로는 이런 요구사항을 충족하기 어려울 수 있습니다. 엣지 게이트웨이에서 센서 데이터를 처리하게 하면, 네트워크 지연을 방지하고 데이터 처리 시간을 최소화할 수 있습니다.

(2) 비용 절감

대용량 데이터를 중앙 서버나 클라우드로 전부 전송하려면 막대한 대역폭이 필요합니다. 구축하고 유지관리하는 비용이 엄청나게 늘어날 수 있죠. 사실, 원격 장비나 센서에서 생성되는 데이터 가운데 기업이 활용하고자 하는 애플리케이션과 큰 관련이 없는 데이터도 많을 수 있는데요. 엣지 컴퓨팅으로 데이터를 먼저 필터링하고 전처리해서 클라우드로 보내면, 데이터 저장과 전송에 들어가는 비용을 상당히 줄일 수 있습니다.

(3) 확장성

스마트팩토리를 구축할 때 모든 요구사항을 처음부터 완벽하게 고려하기란 어려운 일입니다. 또, 많은 제조 기업들이 현대화되지 않은 장비를 유지하고 있는 경우도 많고요. 기업이 성장하거나 디지털 전환을 하고자 할 때 IT 인프라 요구사항을 그때그때 맞춰야 하는 상황이 발생하는 거죠. 그런데 이때 전용 데이터 센터를 구축하고 확장하려면 상당한 비용과 시간, 노력이 필요할 수 있습니다. 그만한 전문인력이 기업 내부에 없는 경우도 많고요. 대신 데이터 수집, 전처리, 분석, 저장 등을 엣지 설비에서 이뤄지게 하면 데이터 처리 범위나 분석 기능을 빠르고 쉽게 확장할 수 있습니다. 엣지 컴퓨팅 장치가 새롭게 추가되더라도, 네트워크 코어에는 큰 대역폭을 요구하지 않습니다.

(4) 안정적인 성능

엣지 컴퓨팅 환경을 구축하면 네트워크가 다소 불안정하더라도 데이터를 안정적으로 분석하고 저장할 수 있습니다. 특히 365일 24시간 가동해야 하는 제조 공정에서는 이런 안정적인 환경을 구축하는 것이 매우 중요하죠. 만약 중앙 서버나 클라우드에 병목, 데이터 처리 지연 등이 발생해서 부득이하게 운영을 중단해야 하는 상황, 즉 다운타임(down time)이 발생하면 고스란히 손실로 직결될 수 있기 때문입니다. 따라서 엣지 컴퓨팅이 제공하는 안정적인 성능은 스마트팩토리의 필수 요소라고 할 수 있습니다.

 

스마트팩토리에서 엣지 컴퓨팅의 목표

엣지 컴퓨팅은 스마트팩토리의 예지보전부터 품질 관리, 재고 관리 등 제조 프로세스의 여러 측면을 최적화하는 데 핵심 역할을 합니다.

(1) 데이터 가시성 개선

맥킨지 연구에 따르면 해양 석유 굴착 장치는 30,000개의 센서에서 데이터를 생성하지만 현재 해당 데이터 중 1% 미만이 의사 결정에 사용된다고 합니다. 레거시 시스템에 IoT 설비를 추가 도입한 공장도 대부분 이런 상황입니다. 생산되는 데이터는 많지만, 이를 통합하고 분석해서 인사이트를 얻는 데까지 나아가지 못하고 있죠.
엣지 컴퓨팅을 활용하면 적은 비용과 노력만으로 기존에 사용되지 않았던 데이터를 활용할 기회를 만들 수 있습니다. ‘데이터 가시성’이 개선되는 것입니다. 이런 환경을 구축하면 비즈니스에 필요한 심층적인 통찰력과 예측 결과를 거의 실시간으로 얻을 수 있습니다.[6]

(2) 엣지AI의 활용

데이터를 생성해서 전송하는 IIoT 기기와 데이터를 수집하고 전처리할 수 있는 엣지 컴퓨팅 환경을 구축해 두면, 최근 급격하게 발전하고 있는 산업용AI를 접목하기 수월해집니다. 이 세가지가 접목되어 ‘엣지AI’라는 개념이 나왔는데요. 엣지AI란 물리적 세계 전반에 걸쳐 기기 자체에 AI 애플리케이션을 구축하는 것을 뜻합니다.[7] 최근 활발히 개발되고 있는 소위 ‘AI 스마트폰’(안드로이드에 생성형 AI를 결합)이 그 사례죠.[8] 엣지 AI란 엣지 컴퓨팅과 비슷하게 AI 연산이 중앙 데이터센터나 클라우드가 아닌 데이터가 위치한 곳에 근접한 네트워크의 가장자리(엣지)에서 이뤄집니다.

AI 알고리즘은 언어, 비전, 소리, 온습도 등 아날로그 형태의 비정형 정보를 이해할 수 있기 때문에 실제 문제를 해결해야 하는 최종 사용자가 있는 장소에 특히 유용합니다. 제조 현장에서도 마찬가지인데요. 하지만 사진, 동영상 같은 대용량의 비정형 데이터를 클라우드 기반 AI 애플리케이션에 활용하는 것은 앞서 언급했듯 대역폭과 보안 관련 문제 때문에 비현실적일 수 있습니다. 특히 제조 현장에서는 택타임(생산 목표를 달성하기 위해 제품 하나를 생산하는데 필요한 시간)을 맞춰야 하니까요. 이럴 때 엣지 컴퓨팅 기반의 엣지AI가 현실적인 대안이 됩니다.

이를 통해 스마트팩토리에서 다음과 같은 이점을 얻을 수 있습니다.

-비효율성 식별: 생산 프로세스의 병목이나 리소스가 낭비되는 요소를 빠르게 알아낼 수 있습니다. 여기에서 출발해 기업은 생산 효율을 높이는 방안을 찾을 수 있습니다.

-향상된 품질 관리: 제조 공정의 모든 단계에서 생산품의 품질을 추적할 수 있습니다. 부품의 작은 문제가 완제품에 심각한 영향을 미치기 전에 조기 식별하고 문제를 해결할 수 있죠. 거꾸로, 완제품에 문제가 생겼을 때 생산이력을 추적해 미처 거르지 못했던 문제를 찾아낼 수도 있습니다.

-더 나은 의사 결정: 제조 공정의 end-to-end 데이터에 액세스할 수 있다면 생산 계획을 세우거나 재고를 관리할 때, 또 운영 측면에서 어떤 결정을 내려야 할 때 더 많은 정보를 바탕으로 더 나은 최종 결정을 내릴 수 있습니다.

(3) 데이터 보안

모든 정보가 클라우드로 전송될 수 있는 시대, 데이터 보안은 중대한 고려 사항이죠. 예컨대, 유럽의 개인정보보호규정(GDPR)이나 미국의 ‘의료정보보호법(HIPPA)’은 매우 강력한 데이터 보호법입니다. 제조업의 경우에도 지역별로 규정된 각종 산업 보안법 때문에 기업의 데이터를 외부로 전송해서 활용하기 어려운 경우도 많고요.

엣지 컴퓨팅으로 이 문제를 완화할 수 있습니다. 데이터는 현장에 두고 이를 통해 나온 인사이트만 중앙으로 전송하는 것이죠. 특히 다양한 기기에서 AI 애플리케이션을 실행하는 엣지AI, 연합학습 등을 구현하고자 할 때 엣지 컴퓨팅은 필수입니다.

엣지 컴퓨팅 솔루션을 이용해 제조 데이터를 통합하고 생산이력추적 시스템을 구축한 사례를 알아보세요.

관련 기업 동향[3]

현재 엣지 컴퓨팅 시장 생태계는 다분화 되어 있는데요. 클라우드 공급 업체, 인프라 장비 업체, 엣지 클라우드 관리 플랫폼 업체 등으로 구분할 수 있습니다. 이 항목에서는 이들 업체가 주도하고 있는 엣지 컴퓨팅 관련 동향을 알아봅니다.

(1) EaaS(Edge as a Service)의 성장

주요 클라우드 공급 업체들은 기업용 엣지 컴퓨팅 솔루션 표준화와 상업화를 주도하고 있습니다. 이미 안정적인 플랫폼을 보유하고 있기 때문에 최적 규모로 사용이 용이하고 비용 효율적인 솔루션을 제공할 수 있죠. 이들 기업은 엣지 컴퓨팅을 기존 클라우드 서비스의 확장으로 보고 있어요. 클라우드 인프라를 서비스를 이용하는 고객사로 분산시키는 것이죠.

예를 들어 MS는 자사의 클라우드 서비스인 애저에서 별도의 ‘애저 IoT 엣지’[9] 솔루션을 서비스하고 있습니다. 기업 온프레미스에 애저 IoT 엣지를 배포해 데이터 사일로를 제거하고, 애저 클라우드에 데이터를 통합해 줍니다. 고객사는 이 솔루션을 활용해 자사 IT 서버 혹은 인근 네트워크와 디바이스 등에서 데이터를 처리할 수 있는 거죠.

주요 클라우드 공급 업체들은 대부분 통신 서비스 사업자, 콘텐츠 전송 네트워크(CDN), 기지국을 포함해 분산 네트워크 시설을 보유한 업체들과 파트너십을 체결해 엣지 컴퓨팅 클라우드 서비스를 제공하고 있습니다.

(2) 인프라 장비 업체들의 비즈니스 모델 변화

엣지 컴퓨팅의 성장은 곧 인프라 장비 업체들의 성장을 의미합니다. 업계 표준이 수립됨에 따라 네트워크 가상화와 오픈소스화가 확산되면서 클라우드 시장 진입장벽이 낮아졌고, 인프라 장비 업체들의 진입이 용이해졌거든요. 수많은 IT 인프라 장비 업체들이 사업 포트폴리오를 하드웨어 중심에서 소프트웨어 중심으로 전환시키고 있습니다.

예컨대, 매년 스페인 바르셀로나에서 개최되는 세계 최대 이동통신 산업 전시회인 ‘2022 모바일 월드 콩그레스’에서는 델, HPE, 시스코 등 IT 하드웨어 업체들이 통신 사업자와 고객사들에게 ‘엣지 투 클라우드’(edge-to-cloud) 솔루션을 경쟁적으로 제안했습니다.

 

구현시 고려 사항

엣지 컴퓨팅은 장점이 많지만, 제대로 구현하지 않으면 오히려 단점이 더 커질 수 있습니다. 아래와 같은 사항들을 고려해서 엣지 컴퓨팅을 최적화해야 합니다.[10]

(1) 비용 최적화

엣지 컴퓨팅은 로컬 장비 여러 대를 사용합니다. 하나의 거대한 중앙 서버, 데이터 센터 대신 말이죠. 로컬 장비를 사용한만큼 중앙의 부하는 줄어듭니다. 즉, 데이터 전송 비용을 아낄 수 있다는 것이 엣지 컴퓨팅의 장점 중 하나입니다.

그런데 자칫 잘못하면 중복 문제로 비용이 높아질 수도 있습니다. 아주 단순한 예를 들어보자면, 데이터나 소프트웨어의 복사본이 너무 많아지는 것입니다. 클라우드에 하나 저장할 것을 엣지 로컬 장비 200대에 각각 저장하는 식으로요. 이와 같은 중복 문제로 인해 데이터 관리의 복잡성이 높아지고 대역폭 사용량이 오히려 늘어날 수도 있습니다.

흔히 제조 현장에서는 전주기 데이터를 가시화하고 모니터링, 제어하기 위해서는 결국 상당량의 데이터가 중앙 서버로 전송돼야 하는 경우도 많습니다. 따라서 피크 때의 대역폭 요구량이 높다면 애초에 엣지 컴퓨팅으로 얻고자 했던 비용 절감 효과가 삭감될 수 있습니다. 비용을 계산할 때에는 이러한 요구사항을 고려해야 합니다.

(2) 상호운용성

여러 설비 간 데이터베이스를 동기화하는 과정은 까다로운 문제입니다. 이기종 설비는 데이터 형태나 통신 프로토콜이 제각각이죠. 심지어 엣지 컴퓨팅 제공 업체 별로도 각각 파편화된 표준을 갖고 있어서, 상호운용성을 보장하는 것은 엣지 컴퓨팅의 과제 중 하나입니다. 여러 엣지 시스템을 통합하려면 별도의 노력이 들어가야 하죠. 실제로 IT 시장분석 및 컨설팅 기관인 IDC의 서베이에 따르면 엣지 IT 서비스 구현 및 관리에 있어서 전체 엣지 솔루션 통합이 가장 어려운 점으로 나타났습니다.

엣지 컴퓨팅을 제대로 활용하려면 다양한 장치와 센서 등 인프라부터 애플리케이션, 네트워크, 보안에 이르기까지 환경을 최적화해야 하고요. 기존 데이터 센터나 퍼블릭 클라우드와의 상호운용성을 살펴야 합니다. 또한, 최근의 가상화, 컨테이너 환경 등을 고려해 운영 및 관리가 너무 복잡해지지 않도록 지속적으로 노력해야 합니다.[11]

최근 온프레미스와 프라이빗 혹은 퍼블릭 클라우드를 함께 활용하는 ‘하이브리드 클라우드’ 환경을 구축하는 기업이 늘고 있습니다. 따라서 2024년에는 여러 환경 간의 원활한 데이터 흐름을 요구하는 엣지-클라우드 상호운용성이 트렌드가 될 것으로 예상됩니다.

우아영 아하랩스 책임연구원

Related Stories

산업용AI 솔루션 LISA로 완벽한 실시간 이상 탐지를 경험해 보세요

산업용AI 솔루션 LISA로 완벽한 실시간 이상 탐지를 경험해 보세요

전세계 제조 업계의 스마트팩토리 전환이 가속화되면서 머신 비전을 이용한 검사 자동화, 실시간 이상 탐지, 예지보전에 대한 관심이 뜨겁습니다. 특히 반도체나 이차전지 등 혁신 제조산업 현장에서는 하루에도 수천 수만 개의 부품·제품들이 생산되는데, 사람이 불량을 일일이 찾아낸다는 것이 불가능에 가까워졌죠. 또한, 이제 고객들은 미묘한 결함도 용납하지 않기 때문에 이 요구를 충족시키려면 신속하고 정확하게 불량을 짚어내는 AI 검사 자동화가 필수입니다. 아하랩스의 LISA(Look...

Why Data CAMP Is the Ultimate Choice for Digital Twins

Why Data CAMP Is the Ultimate Choice for Digital Twins

The idea of a digital twin is to address real-world problems by rendering the physical world visible within a digital environment. Three key technologies are essential for creating a digital twin: Virtualization: This involves modeling the physical world in a virtual...

Data CAMP를 활용해 디지털 트윈의 첫걸음을 내디뎌 보세요

Data CAMP를 활용해 디지털 트윈의 첫걸음을 내디뎌 보세요

디지털 트윈 = 데이터를 가시화하여 현실의 문제를 해결한다   최근 화두로 떠오른 디지털 트윈은 디지털 환경에서 물리적인 현장을 모두 ‘가시화’해서 현실의 문제를 해결한다는 것이 핵심입니다. 디지털 트윈을 구현하는 데에는 핵심 기술 3가지가 필요한데요. 각각 물리 세계를 가상 세계에 모델링하는 가상화, 현실의 변화하는 각종 데이터를 실시간으로 반영하는 동기화, 그리고 모델링과 실시간 데이터를 활용해 해결하고자 하는 문제에 대한 최적의 답을 도출해내는 시뮬레이션입니다....

제조업에 이상 탐지(Anomaly Detector) AI를 적용해야 하는 이유

제조업에 이상 탐지(Anomaly Detector) AI를 적용해야 하는 이유

제조업에 이상 탐지(Anomaly Detector) AI를 적용해야 하는 이유제조 현장에 AI 도입이 가속화되고 있습니다. 2023년 제조업 분야 AI 시장 규모는 32억 달러로 평가되었고, 2028년까지 208억 달러에 이를 것으로 예상됩니다. 이 기간 동안 연평균 성장률(CAGR)은 45.6%에 달하는데요. 최근 몇 년 새 AI가 급격하게 발전하면서 제조업에서도 AI를 통한 공정 자동화, 효율 향상, 수율 향상, 다운타임 최소화 등에 대한 수요가 계속해서 높아지고 있기...

MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란?

MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란?

MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란?2024년 현재 제조업은 매우 빠르게 변화하고 있습니다. 물리적 시스템의 디지털 복제본을 만들어 실시간 모니터링과 시뮬레이션을 수행하는 '디지털 트윈', 머신러닝과 IoT를 활용해 장비 고장을 예상하고 사전에 대응하는 '예지보전(예측 유지보수)', 공정 자동화와 최적화를 추구하는 '스마트 제조', 환경 친화적 공정을 통해 탄소 발자국을 줄이는 '지속 가능한 제조', 애플리케이션을 클라우드 환경에서 구축해 확장성과 유연성을...

제조 기업이 머신러닝 개발 전주기 자동화(MLOps) 플랫폼을 활용할 때의 이점

제조 기업이 머신러닝 개발 전주기 자동화(MLOps) 플랫폼을 활용할 때의 이점

제조 기업이 머신러닝 개발 전주기 자동화(MLOps) 플랫폼을 활용할 때의 이점 들어가기 전에 MLOps(머신러닝 개발 전주기 자동화) 플랫폼이란?   제조 기업의 AI 활용을 돕는 MLOps 플랫폼 제조업 분야로 한정해서 보면, 한국의 산업용 AI 도입율은 50%로 다른 나라에 비해 매우 낮은 수준입니다. 주된 원인으로는 '투자 대비 성과의 불확실성', '내부 운용 인력 부족 등이 꼽힙니다. PoC(Proof of Concept)까지 하더라도 실제 생산 도입으로...

진동 센서 데이터로 모터(회전체)의 이상을 감지한 사례 

진동 센서 데이터로 모터(회전체)의 이상을 감지한 사례 

진동 센서 데이터로 모터(회전체)의 이상을 감지한 사례Challenge   기존에는 발전 설비 모터에 진동 센서를 부착해놓고 룰 기반으로 검사를 진행함 진동의 등락 외에는 각 진동 요소가 결과적으로 모터 고장에 미치는 영향을 알 수 없으므로, 진동의 양이 일정 수준 이상으로 높아지면 무조건 설비를 멈추고 점검하느라 발전 효율이 떨어짐 SPC(통계적 공정 관리) 방법도 있지만, 설비 데이터가 종종 정규분포를 따르지 않을 때 정확도가 떨어진다는 한계가 있음...

생산 자재 변경으로 인한 검사 ‘데이터 드리프트’를 잡아낸 사례(DQI 모델) 

생산 자재 변경으로 인한 검사 ‘데이터 드리프트’를 잡아낸 사례(DQI 모델) 

Challenge   항상 일정한 광학 이미지가 촬영돼야 모델을 제대로 학습시키고 양/불량 판정 정확도를 높일 수 있음. 그러나 제조 현장의 다양한 요인 변화로 인해 ‘데이터 드리프트’가 발생하면서 생산품에 결함이 없음에도 NG가 발생하는 경우가 잦아 품질 검사 효율이 낮아짐 비용 및 관리 복잡도를 높이지 않으면서 검사 이미지가 제대로 촬영되고 있는지 실시간으로 알 수 있는 방안 필요 Approach   검사 이미지가 기존에 학습시킨 Reference...

[경력] 스마트팩토리 AI 솔루션 셋업 엔지니어링 및 개발 (3년 이상)

Summary 경력(3년 이상) 채용 형태 : 정규직 마감일 : 상시 채용 근무지 : 경기도 성남시 분당구 성남대로 43번길 10 (하나EZ타워) 712호 https://ahha.ai/2024/02/13/teamse/ 솔루션 엔지니어링 팀을 소개합니다 솔루션 엔지니어링(SE) 팀은 기술 및 분석 역량을 바탕으로 AHHA Labs 솔루션의 가치를 고객에게 전달합니다. LISA 및 Data CAMP 프로덕트를 이해하고, 고객의 요구와 목표에 부합하는 솔루션을 제공하기 위해...

[신입] 스마트팩토리 AI 솔루션 셋업 엔지니어링 및 개발

Summary 신입 채용 형태 : 정규직 마감일 : 상시 채용 근무지 : 경기도 성남시 분당구 성남대로 43번길 10 (하나EZ타워) 712호 https://ahha.ai/2024/02/13/teamse/ 솔루션 엔지니어링 팀을 소개합니다 솔루션 엔지니어링(SE) 팀은 기술 및 분석 역량을 바탕으로 AHHA Labs 솔루션의 가치를 고객에게 전달합니다. LISA 및 Data CAMP 프로덕트를 이해하고, 고객의 요구와 목표에 부합하는 솔루션을 제공하기 위해 산업현장에 필요한...